Observations of the 2022 September 5 Solar Energetic Particle Event at 15 Solar Radii

C. M. S. Cohen,R. A. Leske, E. R. Christian,A. C. Cummings,G. A. de Nolfo,M. I. Desai, J. Giacalone,M. E. Hill, A. W. Labrador, D. J. McComas,R. L. McNutt Jr.,R. A. Mewaldt, D. G. Mitchell, J. G. Mitchell, G. D. Muro, J. S. Rankin,N. A. Schwadron, T. Sharma, M. M. Shen, J. R. Szalay,M. E. Wiedenbeck, Z. G. Xu, O. Romeo, A. Vourlidas, S. D. Bale, M. Pulupa, J. C. Kasper, D. E. Larson, R. Livi, P. Whittlesey

The Astrophysical Journal(2024)

引用 0|浏览6
暂无评分
摘要
On 2022 September 5, Parker Solar Probe (Parker) observed a large solar energetic particle (SEP) event at the unprecedented distance of only 15 R _S from the Sun. The observations from the Integrated Science Investigation of the Sun (IS⊙IS) obtained over the course of this event are remarkably rich, and an overview is presented here. IS⊙IS is capable of measuring ions from 20 keV to over 100 MeV nuc ^−1 and electrons from 30 keV to 6 MeV; here, we primarily focus on the proton and helium measurements above 80 keV. Among the surprising results are evidence of inverse velocity dispersion at energies above 1 MeV during the onset of the event, a sharp decrease in the energetic particle intensities at all energies at the interplanetary shock crossing, and repeated short durations of highly anisotropic sunward flow. Many changes in the SEP intensities, anisotropy, and spectral steepness are coincident with solar wind structure boundaries identified using the Parker solar wind magnetic field and plasma data. However, there are significant changes that are not correlated with any clearly visible solar wind variation. The observations presented here serve as an introduction to a complex event with numerous opportunities for future, more in-depth studies.
更多
查看译文
关键词
Solar energetic particles,Solar coronal mass ejection shocks,Heliosphere
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要