ABLRI: A program for calculating the long-range interaction energy between two monomers in their non-degenerate states

The Journal of Chemical Physics(2024)

引用 0|浏览2
暂无评分
摘要
An accurate description of the long-range (LR) interaction is essential for understanding the collision between cold or ultracold molecules. However, to our best knowledge, there lacks a general approach to construct the intermolecular potential energy surface (IPES) between two arbitrary molecules and/or atoms in the LR region. In this work, we derived analytical expressions of the LR interaction energy, using the multipole expansion of the electrostatic interaction Hamiltonian and the non-degenerate perturbation theory. To make these formulae practical, we also derived the independent Cartesian components of the electrostatic properties, including the multipole moments and polarizabilities, of the monomer for a given symmetry using the properties of these components and the group-theoretical methods. Based on these newly derived formulae, we developed a FORTRAN program, namely ABLRI, which is capable of calculating the interaction energy between two arbitrary monomers both in their non-degenerate electronic ground states at large separations. To test the reliability of this newly developed program, we constructed IPESs for the electronic ground state of H2O–H2 and O2–H systems in the LR region. The interaction energy computed by our program agreed well with the ab initio calculation, which shows the validity of this program.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要