Chrome Extension
WeChat Mini Program
Use on ChatGLM

Growth and Genome Features of Non-O1/O139 Vibrio cholerae Isolated from Three Species of Common Freshwater Fish

Diversity(2024)

Cited 0|Views12
No score
Abstract
Vibrio cholerae is the etiological agent of cholera in humans. The bacterium is frequently detected in aquatic products worldwide. However, the current literature on the genome evolution of V. cholerae of aquatic animal origins is limited. Here, we firstly characterized the growth and genome features of V. cholerae isolates with different resistance phenotypes from three species of common freshwater fish. The results revealed that the non-O1/O139 V. cholerae isolates (n = 4) were halophilic and grew optimally at 2% NaCl and pH 8.0. Their draft genome sequences were 3.89 Mb–4.15 Mb with an average GC content of 47.35–47.63%. Approximately 3366–3561 genes were predicted to encode proteins, but 14.9–17.3% of them were of an unknown function. A number of strain-specific genes (n = 221–311) were found in the four V. cholerae isolates, 3 of which belonged to none of any of the known sequence types (STs). Several putative mobile genetic elements (MGEs) existed in the V. cholerae isolates, including genomic islands (n = 4–9), prophages (n = 0–3), integrons (n = 1–1), and insertion sequences (n = 0–3). Notably, CRISPR-Cas system arrays (n = 2–10) were found in the V. cholerae genomes, whereby the potential immunity defense system could be active. Comparative genomic analyses also revealed many putative virulence-associated genes (n = 106–122) and antibiotic resistance-related genes (n = 6–9). Overall, the results of this study demonstrate the bacterial broader-spectrum growth traits and fill prior gaps in the genomes of V. cholerae originating from freshwater fish.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined