Effect of microcrystalline cellulose on mechanical properties of flax-jute-epoxy hybrid composite materials using vacuum bagging

Journal of Reinforced Plastics and Composites(2024)

Cited 0|Views1
No score
Abstract
Nowadays, synthetic fibres are replaced with hybrid composite fibres which consist of low energy production, biodegradability, resource renewability, less hazardous and easy handling of manufactured composites. The present work focuses on the effect of microcrystalline cellulose (MCC) particles by varying the percentage concentration (0 wt %, 2 wt % and 4 wt %) in the flax-jute-epoxy composite materials. The MCC particle is mixed with epoxy resin as matrix material and flax-jute fibres as reinforcements in the composite panels fabricated using the vacuum bagging method. The tensile, flexural, impact, hardness and thermogravimetric tests were performed on the fabricated composite panels per the ASTM standard. The experimental results show that with the addition of 2 wt % MCC particle, sample 2 has higher tensile strength, flexural strength and impact strength than sample 1 (0 wt % MCC) and sample 3 (4 wt % MCC). It can be noted that due to the addition of MCC particles, overall mechanical properties improved as a result of good interfacial bonding between matrix and fibres which are evident through SEM analysis. Similarly, thermal stability of the composites also improved in the flax-jute hybrid fibre composites particularly in 2 wt % MCC.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined