The Genetic Landscape of Antimicrobial Resistance Genes in Enterococcus cecorum Broiler Isolates.

Antibiotics (Basel, Switzerland)(2024)

Cited 0|Views3
No score
Abstract
Enterococcus cecorum is associated with bacterial chondronecrosis with osteomyelitis (BCO) in broilers. Prophylactic treatment with antimicrobials is common in the poultry industry, and, in the case of outbreaks, antimicrobial treatment is needed. In this study, the minimum inhibitory concentrations (MICs) and epidemiological cutoff (ECOFF) values (COWT) for ten antimicrobials were determined in a collection of E. cecorum strains. Whole-genome sequencing data were analyzed for a selection of these E. cecorum strains to identify resistance determinants involved in the observed phenotypes. Wild-type and non-wild-type isolates were observed for the investigated antimicrobial agents. Several antimicrobial resistance genes (ARGs) were detected in the isolates, linking phenotypes with genotypes for the resistance to vancomycin, tetracycline, lincomycin, spectinomycin, and tylosin. These detected resistance genes were located on mobile genetic elements (MGEs). Point mutations were found in isolates with a non-wild-type phenotype for enrofloxacin and ampicillin/ceftiofur. Isolates showing non-wild-type phenotypes for enrofloxacin had point mutations within the GyrA, GyrB, and ParC proteins, while five amino acid changes in penicillin-binding proteins (PBP2x superfamily) were observed in non-wild-type phenotypes for the tested β-lactam antimicrobials. This study is one of the first that describes the genetic landscape of ARGs within MGEs in E. cecorum, in association with phenotypical resistance determination.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined