谷歌浏览器插件
订阅小程序
在清言上使用

Recent Advances and Applications of Graph Convolution Neural Network Methods in Materials Science

Ke-Lin Zhao,Qing-Xu Li

Advances in Applied Sciences(2024)

引用 0|浏览2
暂无评分
摘要
With the development of artificial intelligence (AI), AI plus science is increasingly valued, presenting new perspectives to scientific research. The research on using machine learning (including deep learning) to discover patterns from data and predict targeted material properties has received widespread attention, which will have a profound impact in material science studies. In recent years, there has been an increased interest in the use of deep learning in materials science, which has led to significant progress in both fundamental and applied research. One of the most notable advancements is the development of graph convolutional neural network models, which combine graph neural networks and convolutional neural networks to achieve outstanding results in materials science and bridge effectively the deep learning models and material properties predictions. The availability of large materials databases due to the rise of big data has further enhanced the relevance of these models in the field. We present, in this article, a comprehensive overview of graph convolutional neural network models, explaining their fundamental principles and highlighting a few examples of their applications in materials science, as well as current trends. The limitations and challenges that these models face, as well as the potential for future research in this dynamic area are also discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要