A critical suppression feedback loop determines soybean photoperiod sensitivity

Developmental Cell(2024)

Cited 0|Views8
No score
Abstract
Photoperiod sensitivity is crucial for soybean flowering, adaptation, and yield. In soybean, photoperiod sensitivity centers around the evening complex (EC) that regulates the transcriptional level of the core transcription factor E1, thereby regulating flowering. However, little is known about the regulation of the activity of EC. Our study identifies how E2/GIGANTEA (GI) and its homologs modulate photoperiod sensitivity through interactions with the EC. During long days, E2 interacts with the blue-light receptor flavin-binding, kelch repeat, F box 1 (FKF1), leading to the degradation of J/ELF3, an EC component. EC also suppresses E2 expression by binding to its promoter. This interplay forms a photoperiod regulatory loop, maintaining sensitivity to photoperiod. Disruption of this loop leads to losing sensitivity, affecting soybean’s adaptability and yield. Understanding this loop’s dynamics is vital for molecular breeding to reduce soybean’s photoperiod sensitivity and develop cultivars with better adaptability and higher yields, potentially leading to the creation of photoperiod-insensitive varieties for broader agricultural applications.
More
Translated text
Key words
photoperiodism,photoperiod sensitivity,flowering,evening complex,soybean,E2,adaptation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined