Annual and Seasonal Variations in Aerosol Optical Characteristics in the Huai River Basin, China from 2007 to 2021

Remote Sensing(2024)

引用 0|浏览0
暂无评分
摘要
Over the past three decades, China has seen aerosol levels substantially surpass the global average, significantly impacting regional climate. This study investigates the long-term and seasonal variations of aerosols in the Huai River Basin (HRB) using MODIS, CALIOP observations from 2007 to 2021, and ground-based measurements. A notable finding is a significant decline in the annual mean Aerosol Optical Depth (AOD) across the HRB, with MODIS showing a decrease of approximately 0.023 to 0.027 per year, while CALIOP, which misses thin aerosol layers, recorded a decrease of about 0.016 per year. This downward trend is corroborated by improvements in air quality, as evidenced by PM2.5 measurements and visibility-based aerosol extinction coefficients. Aerosol decreases occurred at all heights, but for aerosols below 800 m, with an annual AOD decrease of 0.011. The study also quantifies the long-term trends of five major aerosol types, identifying Polluted Dust (PD) as the predominant frequency type (46%), which has significantly decreased, contributing to about 68% of the total AOD reduction observed by CALIOP (0.011 per year). Despite this, Dust and Polluted Continental (PC) aerosols persist, with PC showing no clear trend of decrease. Seasonal analysis reveals aerosol peaks in summer, contrary to surface measurements, attributed to variations in the Boundary Layer (BL) depth, affecting aerosol distribution and extinction. Furthermore, the study explores the influence of seasonal wind patterns on aerosol type variation, noting that shifts in wind direction contribute to the observed changes in aerosol types, particularly affecting Dust and PD occurrences. The integration of satellite and ground measurements provides a comprehensive view of regional aerosol properties, highlighting the effectiveness of China’s environmental policies in aerosol reduction. Nonetheless, the persistence of high PD and PC levels underscores the need for continued efforts to reduce both primary and secondary aerosol production to further enhance regional air quality.
更多
查看译文
关键词
MODIS,CALIPSO,AOD trend,aerosol seasonal change
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要