谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Plasma-deposited reactive species assisted synthesis of colloidal zinc-oxide nanostructures

Kinga Kutasi, László Péter,Zsolt Tóth

Journal of Physics D: Applied Physics(2024)

引用 0|浏览3
暂无评分
摘要
Abstract A surface-wave microwave discharge is applied to deposit reactive oxygen and nitrogen species (RONS) into the liquid subsequently used as a medium for laser ablation of a Zn metallic target. It is shown that during laser ablation in plasma-treated liquids the H2O2 concentration decreases, while in deionized water (DIW) significant H2O2 is produced. Meanwhile, the pH - initially adjusted by applying reductive metals - increases in the acidic liquids and decreases in the alkaline ones. During months of storage the pH of colloids stabilize around pH 6, which insures the long-term stability of RONS. It is demonstrated that in DIW metallic Zn NPs are created, which gradually oxidize during storage, while in the plasma-treated liquids ZnO NPs are produced with the mean size of 17 nm. In the alkaline plasma-treated liquid the NPs form large aggregates, which slows the dissolution of NPs. In the acidic and neutral solutions besides NPs nanosheets are also formed, which during storage evolve into nanosheet networks as a result of the dissolution of NPs. The band gap of the colloidal ZnO is found to decrease with the formation of aggregates and nanosheet networks. The ZnO NPs ablated in plasma-treated liquids exhibit a high-intensity visible emission covering the green-to-red spectral region. The photoluminescence spectra is dominated by the orange-red emission - previously not detected in the case of laser-ablated ZnO NPs and attributed to the interstitial Zn and oxygen sites - and the yellow emission, which can be attributed to the OH groups on the surface. It is shown that during months of storage, due to the dissolution of NPs and formation of nanosheets, the intensity of the visible emission decreases and shifts to the blue-green spectral region.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要