Light-Induced Reactivity Switch at O2-Activating Bioinspired Copper(I) Complexes.

JACS Au(2024)

Cited 0|Views3
No score
Abstract
Using light to unveil unexplored reactivities of earth-abundant metal-oxygen intermediates is a formidable challenge, given the already remarkable oxidation ability of these species in the ground state. However, the light-induced reactivity of Cu-O2 intermediates still remains unexplored, due to the photoejection of O2 under irradiation. Herein, we describe a photoinduced reactivity switch of bioinspired O2-activating CuI complexes, based on the archetypal tris(2-pyridyl-methyl)amine (TPA) ligand. This report represents a key precedent for light-induced reactivity switch in Cu-O2 chemistry, obtained by positioning C-H substrates in close proximity of the active site. Open and caged CuI complexes displaying an internal aryl ether substrate were evaluated. Under light, a Cu-O2 mediated reaction takes place that induces a selective conversion of the internal aryl ether unit to a phenolate-CH2- moiety with excellent yields. This light-induced transformation displays high selectivity and allows easy postfunctionalization of TPA-based ligands for straightforward preparation of challenging heteroleptic structures. In the absence of light, O2 activation results in the standard oxidative cleavage of the covalently attached substrate. A reaction mechanism that supports a monomeric cupric-superoxide-dependent reactivity promoted by light is proposed on the basis of reactivity studies combined with (TD-) DFT calculations.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined