Robust external spin hyperpolarization of quadrupolar nuclei enabled by strain

Physical Review B(2024)

引用 0|浏览1
暂无评分
摘要
In a theoretical study, we investigate the spin dynamics of interacting nitrogen-vacancy (NV) centers and quadrupolar I = 3/2 nuclear spins, specifically 11B spins in hexagonal boron nitride (h-BN) nanosheets located near the microdiamond surface. We demonstrate the possibility of obtaining external spin-polarization by magnetic-field sweeps across the level anticrossings around zero-field. To achieve this, we leverage crystal strains to establish a polarization transfer mechanism that remains robust against variations in NV orientation, crystal strain inhomogeneity, and electron-nuclear effective couplings. These results pave the way for hyperpolarization of spins in nanomaterials near the diamond surface without experiencing polarization loss to intrinsic nuclear spin-1/2 species, such as 13C and 1H nuclear spins in diamond. The 11B spins in h-BN nanosheets, with their extended relaxation time and large surface area, present a promising alternative for relayed nuclear polarization to the liquid phase and for the development of quantum simulators based on surface nuclear spins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要