Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells

NATURE MATERIALS(2024)

引用 0|浏览5
暂无评分
摘要
For halide perovskites that are susceptible to photolysis and ion migration, iodide-related defects, such as iodine (I2) and iodine vacancies, are inevitable. Even a small number of these defects can trigger self-accelerating chemical reactions, posing serious challenges to the durability of perovskite solar cells. Fortunately, before I2 can damage the perovskites under illumination, they generally diffuse over a long distance. Therefore, detrimental I2 can be captured by interfacial materials with strong iodide/polyiodide (Ix-) affinities, such as fullerenes and perfluorodecyl iodide. However, fullerenes in direct contact with perovskites fail to confine Ix- ions within the perovskite layer but cause detrimental iodine vacancies. Perfluorodecyl iodide, with its directional Ix- affinity through halogen bonding, can both capture and confine Ix-. Therefore, inverted perovskite solar cells with over 10 times improved ultraviolet irradiation and thermal-light stabilities (under 85 degrees C and 1 sun illumination), and 1,000 times improved reverse-bias stability (under ISOS-V ageing tests) have been developed. Iodide-related defects pose serious challenges to the irradiation, thermal, light or reverse-bias stabilities of perovskite solar cells. Here, the authors find that by using the iodide/polyiodide capture and confine effects of perfluorodecyl iodide interfacing with perovskites, inverted perovskite solar cells achieve much improved stabilities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要