The photophysical, photobiological, and DNA/HSA-binding properties of corroles containing carbazole and phenothiazine moieties.

International journal of biological macromolecules(2024)

引用 0|浏览5
暂无评分
摘要
This study characterized four corrole derivatives, namely Cbz-Cor, MetCbz-Cor, PTz-Cor, and PTzEt-Cor, examining their photophysical, electrochemical, photobiological, and biomolecule-binding properties. Experimental photophysical data of absorption and emission elements correlated with a theoretical analysis obtained through time-dependent density functional theory (TD-DFT). As for the photophysical properties, we observed lower fluorescence quantum yields and discernible differences between the excited and ground states, as indicated by Stokes shift values. Natural Transition Orbit (NTO) plots presented high occupied molecular orbital - low unoccupied molecular orbital (HOMO-LUMO) densities around the tetrapyrrolic macrocycle in all examples. Our findings demonstrate that corroles maintain stability in solution and offer photostability (<20 %), predominantly in DMSO(5 %)/Tris-HCl (pH 7.4) buffer solution. Furthermore, the singlet oxygen (1O2) quantum yield and log POW values underscore their potential application in photoinactivation approaches, as these corroles serve as effective ROS generators with more lipophilic features. We also evaluated their biomolecular binding capacity towards salmon sperm DNA and human serum albumin using spectroscopic techniques and molecular docking analysis for sustenance. Concerning biomolecule interaction profiles, the corrole derivatives showed a propensity for interacting in the minor grooves of the double helix DNA due to secondary forces, which were more pronounced in site III of the human serum protein.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要