Synergistic effect of combining low kaolinite grade calcined clay with conventional cementitious materials

Innovative Infrastructure Solutions(2024)

Cited 0|Views0
No score
Abstract
Utilizing amorphous aluminosilicate as an alternative cementitious material has been found to enhance the properties of Portland cement (PC) when exposed to normal and aggressive media. However, the pozzolanic reactivity of supplementary cementitious materials (SCMs) varies, with some SCMs exhibiting high efficiency in early-age hydration and others in later ages. This trade-off often leads to a compromise in the early or later performance of hardened materials. Therefore, the main goal of this paper is to fabricate ternary, quaternary, and quinary mixtures containing commercially available amorphous silicate/aluminosilicate materials with different reactivities. These materials include low-grade metakaolin produced using Fanja (FNJ) calcined clay, silica fume (SF), fly ash (FA), and blast-furnace slag (BFS). The aim is to optimize the early and later performance of hardened PC mortars. The resistance of the hardened mortars to different aggressive attacks, such as sulfuric acid, nitric acid, and sodium sulfate/NaCl solution, was evaluated. The results revealed that replacing PC with FNJ, FNJ-SF, and FNJ-BFS, as well as FNJ-SF-FA, resulted in a significant improvement in the performance of cement mortars at both early and later ages. The ternary, quaternary, and quinary mortars demonstrated higher 7-day compressive strength than that of PC-FNJ blend. The sample with 10 wt.
More
Translated text
Key words
Portland cement,Pozzolanic materials,Early strength,Acid resistance,Flowability
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined