Technical note: A comparison of in-house 3D-printed and commercially available patient-specific skin collimators for use with electron beam therapy

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS(2024)

引用 0|浏览5
暂无评分
摘要
PurposeSkin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics.MethodsAttenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials.ResultsClinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation.ConclusionBoth skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.
更多
查看译文
关键词
3D printing,electron beam therapy,external beam therapy,patient-specific devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要