Irregularity and time series trend analysis of rainfall in Johor, Malaysia

Shaidatul Azdawiyah Abdul Talib,Wan Mohd Razi Idris, Liew Ju Neng, Tukimat Lihan, Muhammad Zamir Abdul Rasid

Heliyon(2024)

引用 0|浏览0
暂无评分
摘要
Due to its effect on weather and its propensity to cause catastrophic incidents, climate change has garnered considerable global attention. Depending on the area, the effects of climate change may vary. Rainfall is among the most significant meteorological factors associated with climate change. In Malaysia, changes in rainfall distribution pattern have led to many floods and droughts events which lead to La Nina and El Nino where Johor is one of the states in southern part that usually affected. Thus, rainfall trend analysis is important to identify changes in rainfall pattern as it gives an initial overview for future analysis. This research aims to evaluate historical rainfall data of Johor between 1991 to 2020. Normality and homogeneity tests were used to ensure the quality of data followed by Mann-Kendall and Sen’s slope analysis to determine rainfall trend as the rainfall data is not normally distributed (p > 0.05). Standardized precipitation anomaly, coefficient of variation, precipitation concentration index and rainfall anomaly index were used to identify rainfall variability and intensity while standard precipitation index was used to evaluate drought severity. The lowest annual rainfall recorded was 1725.07 mm in 2016 and the highest was 2993.19 mm in 2007. Annual rainfall and seasonal rainfall showed a declining trend although it is not statistically significant (p> 0.05). Results reveal that Johor experienced extreme wet and dry years, leading to drought and flood incidents. Major floods arose in 2006, 2007, 2008, 2010 and 2011 while driest years occurred in 1997, 1998 and 2016 which led to El Nino phenomenon. March and April were identified as the driest months among all. Thus, the findings from this study would assist researchers and decision-makers in the development of applicable adaptation and mitigation strategies to reduce climate change impact. It is recommended that more data analysis from more stations should be done in the future research study to obtain a clearer view and more comprehensive results.
更多
查看译文
关键词
climate,drought,flood,rainfall,variability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要