Designed metal-organic framework composites for metal-ion batteries and metal-ion capacitors

Coordination Chemistry Reviews(2024)

引用 0|浏览0
暂无评分
摘要
The utilization of metal–organic frameworks (MOFs) in energy storage applications is constrained by their limited electrical conductivity and insufficient chemical robustness, posing various challenges and limitations. Nevertheless, research has demonstrated that MOF structures with exceptional porosity and adaptable architectures yield a wide range of composites, presenting promising prospects for improving their electrochemical performance in energy storage devices. When combined with other advanced materials, MOFs form composite structures overcoming these constraints by exhibiting superior electrical conductivity, electrochemical activity, and stability in comparison to pure MOFs. This article comprehensively overviews the designed chemistry of MOF-composites for metal-ion batteries (MIBs) and metal-ion capacitors (MICs). The synthesis and properties of various composites involving MOFs, including MOF-MXene, MOF-carbon nanomaterials (CNM)/graphene/carbon, MOF-transition metal oxide (TMO), MOF/polymers, MOF-derived layered double hydroxide (LDH), as well as the challenges and mitigation strategies have been discussed. A brief overview of MOF-composites as electrode materials for MIBs, including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and potassium-ion batteries (KIBs) is presented. The recent developments in MICs, such as lithium-ion capacitors (LICs), magnesium-ion capacitors (MGICs), zinc-ion capacitors (ZICs), sodium-ion capacitors (SICs), and potassium-ion capacitors (KICs) have also been included. Furthermore, the electrochemical performance of the MOF composites has been assessed using a range of metrics, including output voltage, capacity, cycle stability, energy density (ED), and power density (PD). A comprehensive analysis has also been conducted to identify potential obstacles and possible mitigations to explore future possibilities. Overall, a comprehension of MOF-based materials and potential approaches for enhancing the futuristic progression of MOF-composite materials for MIBs and MICs have been elucidated.
更多
查看译文
关键词
Metal-organic framework,Lithium-ion battery,Sodium-ion battery,Potassium-ion battery,Zinc-ion capacitor,Mg-ion capacitor,Sodium-ion capacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要