Hardware Acceleration of Digital Pulse Shape Analysis Using FPGAs.

César González,Mariano Ruiz, Antonio Carpeño, Alejandro Piñas, Daniel Cano-Ott, Julio Plaza, Trino Martinez, David Villamarin

Sensors (Basel, Switzerland)(2024)

引用 0|浏览0
暂无评分
摘要
The BC501A sensor is a liquid scintillator frequently used in nuclear physics for detecting fast neutrons. This paper describes a hardware implementation of digital pulse shape analysis (DPSA) for real-time analysis. DPSA is an algorithm that extracts the physically relevant parameters from the detected BC501A signals. The hardware solution is implemented in a MicroTCA system that provides the physical, mechanical, electrical, and cooling support for an AMC board (NAMC-ZYNQ-FMC) with a Xilinx ZYNQ Ultrascale-MP SoC. The Xilinx FPGA programmable logic implements a JESD204B interface to high-speed ADCs. The physical and datalink JESD204B layers are implemented using hardware description language (HDL), while the Xilinx high-level synthesis language (HLS) is used for the transport and application layers. The DPSA algorithm is a JESD204B application layer that includes a FIR filter and a constant fraction discriminator (CFD) function, a baseline calculation function, a peak detection function, and an energy calculation function. This architecture achieves an analysis mean time of less than 100 µs per signal with an FPGA resource utilization of about 50% of its most used resources. This paper presents a high-performance DPSA embedded system that interfaces with a 1 GS/s ADC and performs accurate calculations with relatively low latency.
更多
查看译文
关键词
digital pulse shape Analysis,FPGA,JESD204B,Xilinx HLS,MicroTCA,hardware acceleration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要