Soft X-ray prompt emission from a high-redshift gamma-ray burst EP240315a

Y. Liu, H. Sun, D. Xu,D. S. Svinkin, J. Delaunay, N. R. Tanvir,H. Gao,C. Zhang,Y. Chen,X. -F. Wu, B. Zhang,W. Yuan, J. An, G. Bruni,D. D. Frederiks, G. Ghirlanda,J. -W. Hu, A. Li,C. -K. Li, J. -D. Li,D. B. Malesani, L. Piro, G. Raman, R. Ricci, E. Troja, S. D. Vergani,Q. -Y. Wu,J. Yang, B. -B. Zhang, Z. -P. Zhu,A. de Ugarte Postigo, A. G. Demin,D. Dobie,Z. Fan,S. -Y. Fu, J. P. U. Fynbo,J. -J. Geng, G. Gianfagna, Y. -D. Hu,Y. -F. Huang,S. -Q. Jiang, P. G. Jonker, Y. Julakanti, J. A. Kennea, A. A. Kokomov,E. Kuulkers,W. -H. Lei,J. K. Leung, A. J. Levan,D. -Y. Li,Y. Li,S. P. Littlefair, X. Liu, A. L. Lysenko, Y. -N. Ma,A. Martin-Carrillo,P. O'Brien,T. Parsotan,J. Quirola-Vasquez,A. V. Ridnaia,S. Ronchini,A. Rossi,D. Mata-Sanchez, B. Schneider,R. -F. Shen,A. L. Thakur, A. Tohuvavohu,M. A. P. Torres, A. E. Tsvetkova,M. V. Ulanov,J. -J. Wei, D. Xiao, Y. -H. I. Yin,M. Bai,V. Burwitz,Z. -M. Cai,F. -S. Chen,H. -L. Chen,T. -X. Chen,W. Chen,Y. -F. Chen,Y. -H. Chen,H. -Q. Cheng,C. -Z. Cui,W. -W. Cui,Y. -F. Dai,Z. -G. Dai,J. Eder,D. -W. Fan,C. Feldman,H. Feng, Z. Feng, P. Friedrich, X. Gao,J. Guan,D. -W Han, J. Han,D. -J. Hou,H. -B. Hu, T. Hu,M. -H. Huang,J. Huo, I. Hutchinson,Z. Ji,S. -M. Jia,Z. -Q. Jia,B. -W. Jiang,C. -C. Jin, G. Jin,J. -J. Jin, A. Keereman, H. Lerman,J. -F. Li,L. -H. Li,M. -S. Li,W. Li,Z. -D. Li,T. -Y. Lian,E. -W. Liang,Z. -X. Ling,C. -Z. Liu, H. -Y. Liu, H. -Q. Liu,M. -J. Liu,Y. -R. Liu,F. -J. Lu,H. -J. LU,L. -D. Luo,F. L. Ma, J. Ma, J. -R. Mao, X. Mao, M. McHugh,N. Meidinger,K. Nandra,J. P. Osborne,H. -W. Pan, X. Pan,M. E. Ravasio, A. Rau,N. Rea, U. Rehman, J. Sanders, A. Santovincenzo,L. -M. Song,J. Su, L. -J. Sun,S. -L. Sun, X. -J. Sun, Y. -Y. Tan,Q. -J. Tang, Y. -H. Tao, J. -Z. Tong, H. Wang,J. Wang,L. Wang,W. -X. Wang,X. -F. Wang,X. -Y. Wang,Y. -L. Wang,Y. -S. Wang,D. -M. Wei,R. Willingale,S. -L. Xiong,H. -T. Xu, J. -J. Xu,X. -P. Xu,Y. -F. Xu,Z. Xu,C. -B. Xue,Y. -L. Xue,A. -L. Yan, F. Yang,H. -N. Yang, X. -T. Yang,Y. -J Yang,Y. -W. Yu, J. Zhang, M. Zhang,S. -N. Zhang,W. -D. Zhang, W. -J. Zhang,Y. -H. Zhang, Z. Zhang,Z. Zhang,Z. -L. Zhang, D. -H. Zhao,H. -S. Zhao,X. -F. Zhao,Z. -J. Zhao, L. -X. Zhou, Y. -L. Zhou,Y. -X. Zhu, Z. -C. Zhu, X. -X. Zuo

arxiv(2024)

引用 0|浏览24
暂无评分
摘要
Long gamma-ray bursts (GRBs) are believed to originate from core collapse of massive stars. High-redshift GRBs can probe the star formation and reionization history of the early universe, but their detection remains rare. Here we report the detection of a GRB triggered in the 0.5–4 keV band by the Wide-field X-ray Telescope (WXT) on board the Einstein Probe (EP) mission, designated as EP240315a, whose bright peak was also detected by the Swift Burst Alert Telescope and Konus-Wind through off-line analyses. At a redshift of z=4.859, EP240315a showed a much longer and more complicated light curve in the soft X-ray band than in gamma-rays. Benefiting from a large field-of-view (∼3600 deg^2) and a high sensitivity, EP-WXT captured the earlier engine activation and extended late engine activity through a continuous detection. With a peak X-ray flux at the faint end of previously known high-z GRBs, the detection of EP240315a demonstrates the great potential for EP to study the early universe via GRBs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要