Magnetic Resonance Frequency Shift Caused by Nonuniform Field and Boundary Relaxation

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
Magnetic field inhomogeneity is usually detrimental to magnetic resonance (MR) experiments. It is widely recognized that a nonuniform magnetic field can lead to an increase in the resonance line width, as well as a reduction in sensitivity and spectral resolution. However, nonuniform magnetic field can also cause shift in resonance frequency, which received far less attention. In this work, we investigate the frequency shift under arbitrary nonuniform magnetic field and boundary relaxation by applying perturbation theory to the Torrey equation. Several compact frequency shift formulas are reported. We find that the frequency shift is mainly determined by B_z distribution (rather than the transverse field components in previous study) and has important dependence on boundary relaxation. Furthermore, due to the difference of boundary relaxation and high order perturbation correction, this frequency shift is spin-species dependent, which implies a systematic error in many MR based precision measurements such as NMR gyroscope and comagnetometers. This insight provides a potential tool for understanding the unexplained isotope shifts in recent NMR gyroscope and new physics searching experiments that utilize comagnetometers. Finally, we propose a new tool for wall interaction research based on the frequency shift's dependency on boundary relaxation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要