谷歌浏览器插件
订阅小程序
在清言上使用

Terahertz emission mechanisms in low-temperature-grown and semi-insulating gallium arsenide photoconductive antenna devices excited at above- and below-bandgap photon energies

Semiconductor Science and Technology(2024)

引用 0|浏览2
暂无评分
摘要
Abstract In this work, the terahertz (THz) time-domain spectroscopy was employed in studying the carrier dynamics in low-temperature grown (LT-) and semi-insulating (SI-) gallium arsenide (GaAs) photoconductive antenna (PCA) at above- (λ = 780 nm, Eg = 1.59 eV) and below- (λ = 1.55 μm, Eg 0.80 eV) bandgap excitation. We measured the excitation power dependence of the LT-GaAs (SI-GaAs) THz emission. Then, the equivalent circuit model (ECM) which considers the (i) photogeneration, (ii) screening effects, and (iii) transport of carriers was utilized in analyzing the THz radiation mechanisms in the above- and below-bandgap excitation of the two substrates. In simulating the above-bandgap THz emission of both PCAs, we employed the direct bandgap excitation model which takes into account the band-to-band transitions of photoexcited carriers. Meanwhile, to simulate the LT-GaAs (SI-GaAs) THz emission at below-bandgap excitation we utilized the two-step photoabsporption facilitated by the mid-gap states. In this model the photoexcited carriers jump from the valence band to the mid-gap states and then to the conduction band. Results suggest that the THz emission from LT-GaAs and SI-GaAs at above- and below-bandgap excitation occur due to band-to-band transitions, and two-step photoabsorption process via midgap states, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要