Interferon-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.

Journal of medical virology(2024)

Cited 0|Views20
No score
Abstract
The immune mechanism underlying hepatitis B surface antigen (HBsAg) loss, particularly type I inflammatory response, during pegylated interferon-α (PEG-IFN) therapy remains unclear. In this study, we aimed to elucidate such immune mechanisms. Overall, 82 patients with chronic hepatitis B (CHB), including 41 with HBsAg loss (cured group) and 41 uncured patients, received nucleos(t)ide analogue and PEG-IFN treatments. Blood samples from all patients, liver tissues from 14 patients with CHB, and hepatic perfusate from 8 liver donors were collected for immune analysis. Jurkat, THP-1 and HepG2.2.15 cell lines were used in cell experiments. The proportion of IFN-γ+ Th1 cells was higher in the cured group than in the uncured group, which was linearly correlated with HBsAg decline and alanine aminotransferase (ALT) levels during treatment. However, CD8+ T cells were weakly associated with HBsAg loss. Serum and intrahepatic levels of Th1 cell-associated chemokines (C-X-C motif chemokine ligand [CXCL] 9, CXCL10, CXCL11, IFN-γ) were significantly lower in the cured patients than in patients with a higher HBsAg quantification during therapy. Serum from cured patients induced more M1 (CD68+CD86+ macrophage) cells than that from uncured patients. Patients with chronic HBV infection had significantly lower proportions of CD86+ M1 and CD206+ M2 macrophages in their livers than healthy controls. M1 polarization of intrahepatic Kupffer cells promoted HBsAg loss by upregulating the effector function of tissue-resident memory T cells with increased ALT levels. IFN-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined