Comprehensive genetic profiling reveals frequent alterations of driver genes on the X chromosome in extranodal NK/T-cell lymphoma.

Cancer research(2024)

引用 0|浏览6
暂无评分
摘要
Extranodal NK/T-cell lymphoma (ENKTCL) is an Epstein-Barr virus (EBV)-related neoplasm with male dominance and a poor prognosis. A better understanding of the genetic alterations and their functional roles in ENKTCL could help improve patient stratification and treatments. Here, we performed comprehensive genetic analysis of 177 ENKTCL cases to delineate the landscape of mutations, copy number alterations (CNAs), and structural variations, identifying 34 driver genes including six previously unappreciated ones, namely HLA-B, HLA-C, ROBO1, CD58, POT1, and MAP2K1. Among them, CD274 (24%) was the most frequently altered, followed by TP53 (20%), CDKN2A (19%), ARID1A (15%), HLA-A (15%), BCOR (14%), and MSN (14%). Chromosome X (chrX) losses were the most common arm-level CNAs in females (~40%), and alterations of four X-linked driver genes (MSN, BCOR, DDX3X, and KDM6A) were more frequent in males and females harboring chrX losses. Among X-linked drivers, MSN was the most recurrently altered, and its expression was lost in approximately one-third of cases using immunohistochemical analysis. Functional studies of human cell lines demonstrated that MSN disruption promoted cell proliferation and NF-κB activation. Moreover, MSN inactivation increased sensitivity to NF-κB inhibition in vitro and in vivo. In addition, recurrent deletions were observed at the origin of replication in the EBV genome (6%). Finally, by integrating the 34 drivers and 19 significant arm-level CNAs, non-negative matrix factorization and consensus clustering identified two molecular groups with different genetic features and prognosis irrespective of clinical prognostic factors. Together, these findings could help improve diagnostic and therapeutic strategies in ENKTCL.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要