谷歌浏览器插件
订阅小程序
在清言上使用

Saccharomyces cerevisiae cellular engineering for the production of FAME biodiesel

Laiyou Wang, Bingbing Liu, Qingshan Meng, Chunchun Yang, Yiyi Hu, Chunyan Wang, Pengyu Wu, Chen Ruan, Wenhuan Li, Shuang Cheng, Shuxian Guo

AMB Express(2024)

引用 0|浏览6
暂无评分
摘要
The unsustainable and widespread utilization of fossil fuels continues to drive the rapid depletion of global supplies. Biodiesel has emerged as one of the most promising alternatives to conventional diesel, leading to growing research interest in its production. Microbes can facilitate the de novo synthesis of a type of biodiesel in the form of fatty acid methyl esters (FAMEs). In this study, Saccharomyces cerevisiae metabolic activity was engineered to facilitate enhanced FAME production. Initially, free fatty acid concentrations were increased by deleting two acetyl-CoA synthetase genes (FAA1, FAA4) and an acyl-CoA oxidase gene (POX1). Intracellular S-adenosylmethionine (SAM) levels were then enhanced via the deletion of an adenosine kinase gene (ADO1) and the overexpression of a SAM synthetase gene (SAM2). Lastly, the S. cerevisiae strain overproducing free fatty acids and SAM were manipulated to express a plasmid encoding the Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). Using this combination of engineering approaches, a FAME concentration of 5.79 ± 0.56 mg/L was achieved using these cells in the context of shaking flask fermentation. To the best of our knowledge, this is the first detailed study of FAME production in S. cerevisiae. These results will provide a valuable basis for future efforts to engineer S. cerevisiae strains for highly efficient production of biodiesel. De novo synthesis of FAMEs was demonstrated in Saccharomyces cerevisiae. FAME production was improved by increasing concentrations of fatty acids and SAM. FAMEs produced in S. cerevisiae mainly included C16 and C18 fatty acid methyl esters.
更多
查看译文
关键词
Biodiesel,Fatty acid methyl esters,Saccharomyces cerevisiae,Free fatty acids,S-adenosylmethionine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要