Spatial segregation of massive clusters in a simulation of colliding dwarf galaxies

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
The collective properties of star clusters are investigated using a simulation of the collision between two dwarf galaxies. The characteristic power law of the cluster mass function, N(M), with a slope dlog N/dlog M ~ -1, is present from cluster birth and remains throughout the simulation. The maximum mass of a young cluster scales with the star formation rate (SFR). The relative average minimum separation, R(M)= N(M)^{1/p}D_min(M)/D(M_low), for average minimum distance D_min(M) between clusters of mass M, and for lowest mass, M_low, measured in projection (p=2) or three dimensions (p=3), has a negative slope, dlog R/dlog M ~ -0.2, for all masses and ages. This agrees with observations of R(M) in low-mass galaxies studied previously. Like the slope of N(M), R}(M) is apparently a property of cluster birth for dwarf galaxies that does not depend on SFR or time. The negative slope for R(M) implies that more massive clusters are centrally concentrated relative to lower mass clusters throughout the entire mass range. Cluster growth through coalescence is also investigated. The ratio of the kinetic to potential energy of all near-neighbor clusters is generally large, but a tail of low values in the distribution of this ratio suggests that a fraction of the clusters merge, ~8% by number throughout the ~300 Myr of the simulation and up to 60% by mass for young clusters in their first 10 Myr, scaling with the SFR above a certain threshold.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要