The effects of lead, copper, and iron corrosion products on antibiotic resistant bacteria and antibiotic resistance genes

Veronika Folvarska, San Marie Thomson,Zihao Lu, Maya Adelgren, Adam Schmidt, Ryan J. Newton,Yin Wang,Patrick J. Mcnamara

ENVIRONMENTAL SCIENCE-ADVANCES(2024)

Cited 0|Views1
No score
Abstract
Antibiotic resistance is a public health crisis. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are present in drinking water distribution systems. Metals are known selective pressures for antibiotic resistance, and metallic corrosion products are found within drinking water distribution systems due to the corrosion of metal pipes. While corrosion products are a source of metals, the impact of specific corrosion products on antibiotic resistance has not been investigated. The objective of this study was to determine the impact of six corrosion products-CuO, Cu2O, Pb5(PO4)3OH, beta-PbO2, Fe3O4, and alpha-FeOOH-on the abundance of ARB and ARGs. Lab-scale microcosms were seeded with source water from Lake Michigan and amended with individual corrosion products. In general, copper and lead corrosion products increased antibiotic resistance, although not universally across different ARB and ARG types. Concentration and speciation of copper and lead corrosion products were found to have an impact on antibiotic resistance profiles. Meanwhile, iron corrosion products had minimal impact on antibiotic resistance. Overall, this study sheds light on how pipe materials may impact antibiotic resistance as a result of corrosion products. Antibiotic resistance is a public health crisis.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined