Failure probability analysis of high fill levee considering multiple uncertainties and correlated failure modes.

Ruirui Sun, Yimingjiang Reheman,Xiaoling Wang, Kaixuan Fei,Jinjun Zhou, Ding Jiao

Scientific reports(2024)

引用 0|浏览4
暂无评分
摘要
Such complex causative factors in current failure probability models are represented by simply random uncertainty and completely independent or correlation of failure modes, which can often limit the model utility. In this study, we developed a methodology to construct failure probability models for high fill levees, incorporating the identification of uncertainties and an analysis of failure modes. Based on quantification of stochastic-grey-fuzzy uncertainties, probability analysis involved with overtopping, instability and seepage failure modes was implemented combined with probability and non-probability methods. Given that the interaction among failure modes typically exhibits nonlinear behavior, rather than linear correlation or complete independence, a simple methodology for the binary Copula function was established and implemented in MATLAB. This methodology was applied to the high fill segments of a long-distance water transfer project characterized by high population density. It shows that the failure probability of a single failure mode is overestimated when uncertainties are not considered, because of the randomness and fuzziness of some parameters and the greyness of information. Meanwhile, it is found that the magnitude of failure probability related to levee breach is overestimated without respect to failure modes correlation, especially when the probabilities of seepage and instability are both significant and closely aligned.
更多
查看译文
关键词
Long-distance water transfer project,Open channel levee,Failure probability model,Probabilistic and non-probabilistic approaches,Copula method,Natural and epistemic uncertainty
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要