Ultra-sensitive current bistability and light switching in a resonant tunneling superlattice transistor

Journal of Applied Physics(2024)

引用 0|浏览0
暂无评分
摘要
Bistability in the current–voltage characteristics of semiconductor superlattices and quantum cascade laser structures has the potential for wide-ranging applications, particularly in sensing systems. However, the interdependency of applied bias and current injection in conventional two-terminal structures has led to complications in analysis and rendered the bistability phenomenon difficult to implement in practical applications. Here, we report a new kind of electronic bistability coupled to optical switching in a resonant tunneling bipolar superlattice transistor. This bistability manifests as sharp discontinuities in the collector current with extremely small variations of the applied voltage, which arise from unstable tunneling transmission across the hetero-barrier between the two-dimensional electron gas (2DEG) at the edge of the transistor base and the collector superlattice structure. The electronic transitions between high and low quantum mechanical transmissions are demonstrated to be caused by self-consistent variations of the internal electric field at the heterointerface between the 2DEG and the superlattice. They are also present in the base current of the three-terminal device and result in sharp switching of near-infrared spontaneous light emission output from an interband radiative recombination process with a peak emission wavelength of 1.58 μm. A comprehensive quantum mechanical theoretical model accounting for the self-consistent bistable tunneling transmission is in quantitative agreement with the experimental data. The measured peak transconductance sensitivity value of 6000 mS can be used in the highly sensitive detector and non-linear device applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要