Chrome Extension
WeChat Mini Program
Use on ChatGLM

Functional synergy of a human-specific and an ape-specific metabolic regulator in human neocortex development

Lei Xing, Vasiliki Gkini, Anni I. Nieminen, Hui-Chao Zhou, Matilde Aquilino, Ronald Naumann, Katrin Reppe, Kohichi Tanaka, Peter Carmeliet, Oskari Heikinheimo, Svante Paeaebo, Wieland B. Huttner, Takashi Namba

NATURE COMMUNICATIONS(2024)

Cited 0|Views17
No score
Abstract
Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-alpha KG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size. Cell metabolism has emerged as a major factor implicated in human brain evolution. Here, the authors show that an ape-specific enzyme enhances the ability of a human-specific enzyme to increase glutaminolysis and therefore expand the size of the human neocortex.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined