Borylation and rearrangement reactions of azasilaanthracenes to afford B,N-doped nanographenes.

Dalton transactions (Cambridge, England : 2003)(2024)

Cited 0|Views1
No score
Abstract
An air-stable B3,N3-containing dibenzobisanthene (8) was prepared in 29% yield by heating a 1,3,5-tri(azasilaanthryl)benzene (5) with BBr3 (180 °C). Under these conditions, the reaction does not stop after threefold SiMe2/BBr exchange but proceeds further via two rearrangement and two intramolecular C-H borylation steps. Some mechanistic details were unveiled by using smaller model systems and applying lower reaction temperatures. According to X-ray crystallography, compound 8 has a helically distorted scaffold. Due to its multiple resonance structure, it shows a narrow-band blue-green emission (λem = 493 nm; ΦPL = 84%; FWHM = 0.20 eV; THF); samples measured in PMMA gave prompt and delayed fluorescence lifetimes of 10.7 ns and 136 μs, respectively. The optical properties of 8 and of structurally related species were also investigated by quantum-chemical means: most of these compounds exhibit a small energy gap ΔEST between the lowest excited singlet (S1) and triplet (T1) states and a non-negligible spin-orbit coupling (SOC) between S1 and T1/T2, demonstrating their potential as thermally activated delayed fluorescence (TADF) emitters.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined