High Efficiency Deep-learning Based Video Compression

ACM Transactions on Multimedia Computing, Communications, and Applications(2024)

引用 0|浏览0
暂无评分
摘要
Although deep learning technique has achieved significant improvement on image compression, but its advantages are not fully explored in video compression, which leads to the performance of deep-learning based video compression (DLVC) is obvious inferior to that of hybrid video coding framework. In this paper, we proposed a novel network to improve the performance of DLVC from its most important modules, including Motion Process (MP), Residual Compression (RC) and Frame Reconstruction (FR). In MP, we design a split second-order attention and multi-scale feature extraction module to fully remove the warping artifacts from multi-scale feature space and pixel space, which can help reduce the distortion in the following process. In RC, we propose a channel selection mechanism to gradually drop redundant information while preserving informative channels for a better rate-distortion performance. Finally, in FR, we introduce a residual multi-scale recurrent network to improve the quality of the current reconstructed frame by progressively exploiting temporal context information between it and its several previous reconstructed frames. Extensive experiments are conducted on the three widely used video compression datasets (HEVC, UVG and MCL-JVC), and the performance demonstrates the superiority of our proposed approach over the state-of-the-art methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要