Self-charging V2CTx/CNT-based zinc ion micro-supercapacitor for wearable electronics

Chemical Engineering Journal(2024)

引用 0|浏览3
暂无评分
摘要
The flexible self-charging zinc ion micro-supercapacitors (ZIMSC) that can be effectively charged by harvesting ubiquitous energy from the air, not only achieve power supply anytime and anywhere but also improve the integrated degree without external charging plug or cable, enabling it a promising candidate for the wearable electronic device in various environmental scenarios. Herein, we reported a chemically self-charging ZIMSC based on a free-standing V2CTx/CNT electrode. Introducing 1D CNT into 2D V2CTx fundamentally overcomes the self-stacking problem of the nanosheets while providing additional ion transport paths and improving the conductivity of active electrodes. The area-specific capacity of V2CTx/CNT-based ZIMSC achieves 117.2 mF cm−2 after 8.0 h self-charging. The excellent self-charging performance is attributed to the oxidation of vanadium in the V2CTx-based cathode stimulated by ambient oxygen, accompanied by the Zn2+ deintercalation process. The flexible ZIMSC exhibited an optimal area capacitance of 246.88 mF cm−2 at a current density of 0.5 mA cm−2. Additionally, the self-charging ZIMSC is integrated with the V2CTx-based pressure sensors for a self-powering wearable system that exhibits excellent stability over 50,000 loading/unloading cycles. This work provides a rational design for constructing highly efficient self-charging energy storage devices and broadens the horizons of flexible wearable devices
更多
查看译文
关键词
V2CTx,CNT,Zn ion micro-supercapacitors,Self-charge,Self-powering wearable system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要