Mechanochemically Responsive Polymer Enables Shockwave Visualization

crossref(2024)

Cited 0|Views6
No score
Abstract
Abstract Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion 1–3 to space exploration 4,5 to seismology 6. However, investigating material properties at extreme strain rates remains challenging due to temporal and spatial resolution limitations. Combining high-strain-rate testing with mechanochemistry uniquely encodes the molecular-level deformation within the material itself, thus enabling the direct quantification of the material response. Here, we demonstrate a mechanophore-functionalized block copolymer that self-reports unique energy dissipation mechanisms, such as bond rupture and acoustic wave dissipation, in response to high-strain-rate impacts. A microprojectile accelerated towards the polymer permanently deforms the material at a shallow depth. At intersonic velocities, the polymer reports significant subsurface energy absorption due to shockwave attenuation, a mechanism traditionally considered negligible compared to plasticity and not well explored in polymers. The acoustic wave velocity of the material is directly recovered from the mechanochemically-activated subsurface volume recorded in the material, which is validated by simulations, theory, and acoustic measurements. This integration of mechanochemistry with microballistic testing enables characterization of high-strain-rate mechanical properties and elucidates new insights applicable to nanomaterials 7, particle-reinforced composites 8, and biocompatible polymers 9.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined