Chrome Extension
WeChat Mini Program
Use on ChatGLM

Chemoenzymatic synthesis of amino-esters as precursors of ammonium salt-based surfactants from 5-hydroxymethylfurfural (HMF)

GREEN CHEMISTRY(2024)

Cited 0|Views5
No score
Abstract
N-Substituted 5-(hydroxymethyl)-2-furfuryl amines have been obtained through the reductive amination of 5-hydroxymethylfurfural (HMF) with a variety of primary amines using a non-noble metal catalyst based on monodisperse Co nanoparticles covered by a thin carbon layer. The Co@C catalyst was highly active, selective and stable, allowing us to perform the reductive amination of HMF under very mild reaction conditions (60 degrees C and 4 bar H2) using ethanol as a green solvent and achieve the corresponding amino-alcohol in yields ranging from 80 to 99%. Moreover, the reaction was extended to other furanic aldehydes with excellent success. Furthermore, in order to synthesize amino-ester derivatives, precursors of ammonium salt-based surfactants, the reductive amination of HMF with methylamine was coupled with the selective esterification of the hydroxymethyl group of the furan ring with fatty acids using lipase CALB (Novozym 435) as a biocatalyst in 2-methyltetrahydrofuran as a green and enzyme compatible solvent, achieving practically total conversion to the corresponding amino-esters. The process was implemented in flow reactors by combining two consecutive fixed bed reactors, achieving a global yield of the amino-ester derivative of 85%, which was maintained over 86 h of operation. Precursors of ammonium salt biosurfactants have been obtained from HMF by coupling cobalt-catalyzed reductive amination with selective bio-esterification using an immobilized lipase CALB. The process has been optimized in batch and flow reactors.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined