Impact of Aluminate Cements on the Durability and Mechanical Performance of Strain-hardening Cementitious Composites

Journal of Building Engineering(2024)

引用 0|浏览2
暂无评分
摘要
Strain-hardening cementitious composites (SHCCs) are durable, ductile, fiber-reinforced cement-based materials. While fly ash (FA) is often used to partially replace Portland cement in SHCCs to enhance material performance, it can lead to long setting times and slow strength development. To address these limitations, this study investigates the use of aluminate cement as partial replacements for Portland cement in FA-based SHCCs. Furthermore, the study aims to fill a significant knowledge gap by thoroughly examining the influence of aluminate cement on the workability, durability, and strain-hardening behavior of SHCCs. Aluminate cements encompass both calcium sulfoaluminate (CSA) cement and calcium aluminate cement (CAC), distinguished by their composition rich in calcium aluminate phases. This study investigated the use of CSA and CAC cements as partial replacements for Portland cement in SHCCs. Both fresh and hardened properties of the CSA- and CAC-SHCCs were examined, while their microstructures and chemical phases were investigated using SEM and XRD analyses. Results showed that CSA and CAC cements reduced fluidity, setting time, and drying shrinkage but increased porosity and early strength development for SHCCs. CSA-SHCCs showed enhanced impermeability due to the refinement of interior pore space through the hydration products. While all modified SHCCs retained tensile strain hardening behavior, the tensile performance degraded due to the hydration effects of ye'elimite and calcium aluminates. The reduced tensile strain capacity was elucidated using the theory of steady-state crack opening.
更多
查看译文
关键词
Fibers,high-performance fiber-reinforced concrete,calcium sulfoaluminate cement,calcium aluminate cement,tensile strain-hardening
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要