Cell Viability Assessment and Ion Release Profiles of GICs Modified with TiO2- and Mg-Doped Hydroxyapatite Nanoparticles

Cvjeticanin Milica,Ramic Bojana,Milanović Marija,Veljović Djordje, Andjelkovic Aleksandar,Maletic Snezana, Jevrosimov Irina,Bajkin Branislav, Guduric Vera

Journal of Dentistry(2024)

引用 0|浏览0
暂无评分
摘要
Objectives To assess and compare the cell viability and ion release profiles of two conventional glass ionomer cements (GICs), Fuji IX and Ketac Molar EasyMix, modified with TiO2 and Mg-doped-HAp nanoparticles (NPs). Methods TiO2 NPs, synthesized via a sol–gel method, and Mg-doped hydroxyapatite, synthesized via a hydrothermal process, were incorporated into GICs at a concentration of 5 wt.%. The biocompatibility of prepared materials was assessed by evaluating their effects on the viability of dental pulp stem cells (DPSCs), together with monitoring ion release profiles. Statistical analysis was performed using One-way analysis of variance, with significance level p < 0.05. Results The addition of NPs did not significantly affect the biocompatibility of GICs, as evidenced by comparable decreased levels in cell viability to their original formulations. Distinct variations in cell viability were observed among Fuji IX and Ketac Molar, including their respective modifications. FUJI IX and its modification with TiO2 exhibited moderate decrease in cell viability, while other groups exhibited severe negative effects. While slight differences in ion release profiles were observed among the groups, significant variations compared to original cements were not achieved. Fluoride release exhibited an initial “burst release” within the initial 24 hours in all samples, stabilizing over subsequent days. Conclusions The addition of NPs did not compromise biocompatibility, nor anticariogenic potential of tested GICs. However, observed differences among FUJI IX and Ketac Molar, including their respective modifications, as well as induced low viability of DPSC by all tested groups, suggest the need for careful consideration of cement composition in their biological assessments. Clinical significance The findings contribute to understanding the complex interaction between NPs and GIC matrices. However, the results should be interpreted recognizing the inherent limitations associated with in vitro studies. Further research avenues could explore long-term effects, in vivo performance, and potential clinical applications.
更多
查看译文
关键词
Glass Ionomer Cement,Cell viability,Ion release profiles,Titanium dioxide,Hydroxyapatite,Nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要