Optimal Management in the Operation of Complex Technical Systems

Dyadyura K., Oborskyi G., Prokopovych I., Khamitov V., Holubiev M.

Журнал інженерних наук(2024)

Cited 0|Views0
No score
Abstract
Developing a cost management system for a complex technical system (CTS) at the stages of its life cycle is a modern trend aimed at creating sustainable cooperation ties based on requirements, including those of manufacturers and consumers. The article explores the concept of a complex technical system. The principles and properties of a complex technical system were described. A model of a procedure for checking the operability of a complex technical system with an arbitrary distribution of the time of independent manifestation of a failure was proposed for the example of compressor station equipment. Models of operation of complex technical systems based on information about their state were considered. It was also shown how to optimize maintenance decisions for these systems in terms of the minimum average unit cost and how reliable this ensures. Additionally, proof of the existence of an optimal verification strategy was given. An algorithm for determining the moments of verification was developed to ensure the minimum cost. The methods of collecting, processing, and effectively using information for making decisions about the technical condition of complex products and the possibility of further exploitation were improved based on selecting informative diagnostic features and constructing models that comprehensively consider the maximum and current level of their parameters. This allowed for the quality of the final products to be ensured. The practical use of the proposed methods of diagnosis and forecasting made it possible to increase the actual CTS resource by 1.5–2.0 times. This also increased the productivity of the technological process by 1.6 times due to the reduction of the number of stops for maintenance for replacement, adjustments, and sub-adjustments. As a result, the value of the lack of basic production was reduced from 1.2 % to 0.8 %, and the cost of manufacturing products was decreased by 1.2–2.0 times.
More
Translated text
Key words
standardization,quality assurance,optimum tolerance design,industrial growth,quality control,reliability indicator,product lifecycle management
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined