Connectome caricatures: removing large-amplitude co-activation patterns in resting-state fMRI emphasizes individual differences.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览0
暂无评分
摘要
High-amplitude co-activation patterns are sparsely present during resting-state fMRI but drive functional connectivity 1-5 . Further, they resemble task activation patterns and are well-studied 3,5-10 . However, little research has characterized the remaining majority of the resting-state signal. In this work, we introduced caricaturing-a method to project resting-state data to a subspace orthogonal to a manifold of co-activation patterns estimated from the task fMRI data. Projecting to this subspace removes linear combinations of these co-activation patterns from the resting-state data to create Caricatured connectomes. We used rich task data from the Human Connectome Project (HCP) 11 and the UCLA Consortium for Neuropsychiatric Phenomics 12 to construct a manifold of task co-activation patterns. Caricatured connectomes were created by projecting resting-state data from the HCP and the Yale Test-Retest 13 datasets away from this manifold. Like caricatures, these connectomes emphasized individual differences by reducing between-individual similarity and increasing individual identification 14 . They also improved predictive modeling of brain-phenotype associations. As caricaturing removes group-relevant task variance, it is an initial attempt to remove task-like co-activations from rest. Therefore, our results suggest that there is a useful signal beyond the dominating co-activations that drive resting-state functional connectivity, which may better characterize the brain's intrinsic functional architecture.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要