Effect of primary air and coal properties on the formation of fine mode particles during low NOx gasification-combustion of coal in a self-sustaining furnace

Process Safety and Environmental Protection(2024)

引用 0|浏览2
暂无评分
摘要
Gasification-combustion technology can reduce NOx while the formation characteristics of fine mode PM is unclear. This research studied the impact of the excess air coefficient (αg) of the gasifier and the properties of coal on the formation and evolution of fine mode PM. The experiment was conducted on a self-sustaining furnace consisting of a gasifier where pyrolysis/gasification occurs and a combustion chamber where burnout of gasification gas and char occurs. The results showed that fine mode PM and NOx can be synergistically reduced by optimizing αg during gasification-combustion. A low or high αg can lead to a high furnace temperature in the gasifier or combustion chamber, respectively. Elimination of high temperature is crucial to reduce element vaporization which promotes the formation of fine mode PM. Additionally, an optimized combination of furnace temperature and reducing atmosphere in the gasifier can decrease NOx. The optimal αg was 0.32 for bituminous coal (BC). Fine mode PM generated from gasification-combustion of BC, lean coal (LC), and semi-char (SC) mainly consists of Ca, Si, Fe, and S. The vaporization of element from LC and BC primarily occurs during char combustion in the combustion chamber, while the vaporization of element from SC occurs almost equally in the gasifier and combustion chamber.
更多
查看译文
关键词
Gasification combustion,Excess air coefficient,Coal properties,Particulate matter, NOx
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要