Soil source, not the degree of urbanization determines soil physicochemical properties and bacterial composition in Ningbo urban green spaces

Science of The Total Environment(2024)

引用 0|浏览8
暂无评分
摘要
Urban green spaces provide multiple ecosystem services and have great influences on human health. However, the compositions and properties of urban soil are not well understood yet. In this study, soil samples were collected from 45 parks in Ningbo to investigate the relationships among soil physicochemical properties, heavy metals and bacterial communities. The results showed that soil dissolved organic matter (DOM) was of high molecular weight, high aromaticity, and low degree of humification. The contents of heavy metals were all below the China's national standard safety limit (GB 3660–2018). The bioavailability of heavy metals highly correlated with soil pH, the content of DOC, the fluorescent component, the degree of humification and the source of DOM. The most abundant genera were Gemmatimonadaceae_uncultured, Xanthobacteraceae_uncultured, and Acidothermus in all samples, which were related to nitrogen cycle and bioavailability of heavy metals. Soil pH, bioavailability of Zn, Cd, Pb, and Ni (CaCl2 extracted) were the main edaphic factors influencing bacterial community composition. It should be noted that there was no significant impact of urbanization on soil physicochemical properties and bacterial composition, but they were determined by the source of soil in urban green spaces. However, with the passage of time, the effect of urbanization on urban green spaces cannot be ignored. Overall, this study provided new insight for understanding the linkage among soil physicochemical properties, heavy metals, and bacterial communities in urban green spaces.
更多
查看译文
关键词
Urban green spaces,Soil dissolved organic matter,Heavy metals,Bacterial community,Urbanization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要