CHEKG: a collaborative and hybrid methodology for engineering modular and fair domain-specific knowledge graphs

Knowledge and Information Systems(2024)

引用 0|浏览0
暂无评分
摘要
Ontologies constitute the semantic model of Knowledge Graphs (KGs). This structural association indicates the potential existence of methodological analogies in the development of ontologies and KGs. The deployment of fully and well-defined methodologies for KG development based on existing ontology engineering methodologies (OEMs) has been suggested and efficiently applied. However, most of the modern/recent OEMs may not include tasks that (i) empower knowledge workers and domain experts to closely collaborate with ontology engineers and KG specialists for the development and maintenance of KGs, (ii) satisfy special requirements of KG development, such as (a) ensuring modularity and agility of KGs, (b) assessing and mitigating bias at schema and data levels. Toward this aim, the paper presents a methodology for the Collaborative and Hybrid Engineering of Knowledge Graphs (CHEKG), which constitutes a hybrid (schema-centric/top-down and data-driven/bottom-up), collaborative, agile, and iterative approach for developing modular and fair domain-specific KGs. CHEKG contributes to all phases of the KG engineering lifecycle: from the specification of a KG to its exploitation, evaluation, and refinement. The CHEKG methodology is based on the main phases of the extended Human-Centered Collaborative Ontology Engineering Methodology (ext-HCOME), while it adjusts and expands the individual processes and tasks of each phase according to the specialized requirements of KG development. Apart from the presentation of the methodology per se, the paper presents recent work regarding the deployment and evaluation of the CHEKG methodology for the engineering of semantic trajectories as KGs generated from unmanned aerial vehicles (UAVs) data during real cultural heritage documentation scenarios.
更多
查看译文
关键词
Knowledge graph,Engineering methodology,Collaborative engineering of knowledge graphs,Hybrid engineering of knowledge graphs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要