Quantifying quantum entanglement via machine learning models

Communications in Theoretical Physics(2024)

引用 0|浏览0
暂无评分
摘要
Abstract Quantifying entanglement measures for quantum states with unknown density matrices is a chal lenging task. Machine learning offers a new perspective to address this problem. By training machine learning models using experimentally measurable data, we can predict the target entan glement measures. In this study, we compare various machine learning models and find that the linear regression and stack models perform better than others. We investigate the model’s impact on quantum states across different dimensions and find that higher-dimensional quantum states yield better results. Additionally, we investigate which measurable data has better predictive power for target entanglement measures. Using correlation analysis and principal component analysis, we demonstrate that quantum moments exhibit a stronger correlation with coherent information among these data features.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要