Nature-Inspired Helicoidal Nanocellulose-Based Multi-Compartment Assemblies with Tunable Chiroptical Properties.

Advanced materials (Deerfield Beach, Fla.)(2024)

引用 0|浏览0
暂无评分
摘要
Cellulose-based nanocomposites are highly appealing for the development of next-generation sustainable functional materials. Although many advances have been made in this direction, the true potential of fibrillar nanocomposites has yet to be realized because available fabrication approaches are inadequate for achieving precise structural control at the sub-micrometer scale. Here a spray-assisted alignment methodology of cellulose nanofibrils is combined with the layer-by-layer assembly into an additive manufacturing process in which the alignment direction of each cellulose layer is rationally selected to achieve thin films with a helicoidal arrangement of the nanofibrils. The helicoidal structure of the films is verified by measuring the circular dichroism (CD) of the samples. The sign and position of the structural CD peak show that the handedness and the pitch of the chiral structures can be easily tuned by deliberately selecting simple parameters, such as the number of consecutive cellulose layers sprayed in the same direction, and the angle of rotation between successive stacks of layers. To our knowledge, our approach is unique as it offers the possibility to prepare complex nanocomposite architectures with various nanoscale-controlled sub-structures from different anisometric objects, which is enabling novel designs of composite films with damage-resistant and/or optical filtering functionalities. This article is protected by copyright. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要