Improving inference on neutron star properties using information from binary merger remnants

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
The gravitational-wave signal GW170817 is a result of a binary neutron star coalescence event. The observations of electromagnetic counterparts suggest that the event didn't led to the prompt formation of a black-hole. In this work, we first classify the GW170817 LIGO-Virgo data sample into prompt collapse to a black-hole using the q-dependent threshold mass fits and then remove these cases from the data sample. We find that the cases without a prompt black-hole formation do not support radii < 10 km unlike the LIGO-Virgo data sample. This is consistent with the maximum mass constraint, based on the binary pulsar J0348+0432, imposed LIGO-Virgo data sample. Additionally, we find that the cases without the prompt collapse to a black-hole improve the uncertainty range of neutron star radii from 3.3 km to 2.6 km for the data sample without the mass constraint and from 2.8 km to 2.5 km for the data sample with the mass constraint, implying improved constraints on the neutron star radii and hence the equation-of-state.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要