Electrical control of a Kondo spin screening cloud

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
In metals and semiconductors, an impurity spin is quantum entangled with and thereby screened by surrounding conduction electrons at low temperatures, called the Kondo screening cloud. Quantum confinement of the Kondo screening cloud in a region, called a Kondo box, with a length smaller than the original cloud extension length strongly deforms the screening cloud and provides a way of controlling the entanglement. Here we realize such a Kondo box and develop an approach to controlling and monitoring the entanglement. It is based on a spin localized in a semiconductor quantum dot, which is screened by conduction electrons along a quasi-one-dimensional channel. The box is formed between the dot and a quantum point contact placed on a channel. As the quantum point contact is tuned to make the confinement stronger, electron conductance through the dot as a function of temperature starts to deviate from the known universal function of the single energy scale, the Kondo temperature. Nevertheless, the entanglement is monitored by the measured conductance according to our theoretical development. The dependence of the monitored entanglement on the confinement strength and temperature implies that the Kondo screening is controlled by tuning the quantum point contact. Namely, the Kondo cloud is deformed by the Kondo box in the region across the original cloud length. Our findings offer a way of manipulating and detecting spatially extended quantum many-body entanglement in solids by electrical means.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要