General non-linear fragmentation with discontinuous Galerkin methods

Maxime Lombart, Charles-Edouard Bréhier,Mark Hutchison,Yueh-Ning Lee

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Dust grains play a significant role in several astrophysical processes, including gas/dust dynamics, chemical reactions, and radiative transfer. Replenishment of small-grain populations is mainly governed by fragmentation during pair-wise collisions between grains. The wide spectrum of fragmentation outcomes, from complete disruption to erosion and/or mass transfer, can be modelled by the general non-linear fragmentation equation. Efficiently solving this equation is crucial for an accurate treatment of the dust fragmentation in numerical modelling. However, similar to dust coagulation, numerical errors in current fragmentation algorithms employed in astrophysics are dominated by the numerical over-diffusion problem – particularly in 3D hydrodynamic simulations where the discrete resolution of the mass density distribution tends to be highly limited. With this in mind, we have derived the first conservative form of the general non-linear fragmentation with a mass flux highlighting the mass transfer phenomenon. Then, to address cases of limited mass density resolution, we applied a high-order discontinuous Galerkin scheme to efficiently solve the conservative fragmentation equation with a reduced number of dust bins. An accuracy of 0.1 -1 orders of magnitude.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要