Imparting Stable and Ultrahigh Proton Conductivity to a Layered Rare Earth Hydroxide via Ion Exchange.

Cong Wang, Yexin Shen, Xiuyuan Wang,Yugang Zhang, Chengzhen Wang, Qin Wang,Hui Li,Shuao Wang,Daxiang Gui

ACS applied materials & interfaces(2024)

引用 0|浏览0
暂无评分
摘要
Proton conductors are essential functional materials with a wide variety of potential applications in energy storage and conversion. In order to address the issues of low proton conductivity and poor stability in conventional proton conductors, a simple and valid ion-exchange method was proposed in this study for the introduction of stable and ultrahigh proton conductivity in layered rare earth hydroxides (LRHs). Test analyses by solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and powder X-ray diffraction revealed that the exchange of H2PO4- not only does not disrupt the layered structure of LRHs, but also creates more active proton sites and channels necessary for proton transport, thereby creating a high-performance proton conductor (LRH-H2PO4-). By utilizing this ion-exchange method, the proton conductivity of LRHs can be significantly enhanced from a low level to an ultrahigh level (>10-2 S·cm-1), while maintaining excellent long-term stability. Moreover, through methodically manipulating the guest ions and molecules housed within the interlayers of LRHs, a comprehensive explanation has been presented regarding the proficient mechanism of proton conduction in LRH-H2PO4-. As a result, this investigation presents a feasible and available approach for advancing proton conductor.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要