The Associations of Prenatal Exposure to Fine Particulate Matter and Its Chemical Components with Allergic Rhinitis in Children and the Modification Effect of Polyunsaturated Fatty Acids: A Birth Cohort Study.

Environmental health perspectives(2024)

引用 0|浏览0
暂无评分
摘要
BACKGROUND:Polyunsaturated fatty acids (PUFAs) have been shown to protect against fine particulate matter <2.5μm in aerodynamic diameter (PM2.5)-induced hazards. However, limited evidence is available for respiratory health, particularly in pregnant women and their offspring. OBJECTIVES:We aimed to investigate the association of prenatal exposure to PM2.5 and its chemical components with allergic rhinitis (AR) in children and explore effect modification by maternal erythrocyte PUFAs. METHODS:This prospective birth cohort study involved 657 mother-child pairs from Guangzhou, China. Prenatal exposure to residential PM2.5 mass and its components [black carbon (BC), organic matter (OM), sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+)] were estimated by an established spatiotemporal model. Maternal erythrocyte PUFAs during pregnancy were measured using gas chromatography. The diagnosis of AR and report of AR symptoms in children were assessed up to 2 years of age. We used Cox regression with the quantile-based g-computation approach to assess the individual and joint effects of PM2.5 components and examine the modification effects of maternal PUFA levels. RESULTS:Approximately 5.33% and 8.07% of children had AR and related symptoms, respectively. The average concentration of prenatal PM2.5 was 35.50±5.31 μg/m3. PM2.5 was positively associated with the risk of developing AR [hazard ratio (HR)=1.85; 95% confidence interval (CI): 1.16, 2.96 per 5 μg/m3] and its symptoms (HR=1.79; 95% CI: 1.22, 2.62 per 5 μg/m3) after adjustment for confounders. Similar associations were observed between individual PM2.5 components and AR outcomes. Each quintile change in a mixture of components was associated with an adjusted HR of 3.73 (95% CI: 1.80, 7.73) and 2.69 (95% CI: 1.55, 4.67) for AR and AR symptoms, with BC accounting for the largest contribution. Higher levels of n-3 docosapentaenoic acid and lower levels of n-6 linoleic acid showed alleviating effects on AR symptoms risk associated with exposure to PM2.5 and its components. CONCLUSION:Prenatal exposure to PM2.5 and its chemical components, particularly BC, was associated with AR/symptoms in early childhood. We highlight that PUFA biomarkers could modify the adverse effects of PM2.5 on respiratory allergy. https://doi.org/10.1289/EHP13524.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要