High‐Power‐Density Hybrid Acid/Alkali Zinc–Air Battery for High‐Efficiency Desalination

Advanced Energy Materials(2024)

引用 0|浏览0
暂无评分
摘要
AbstractThe electrochemical desalination technique is recognized as a promising solution to alleviate freshwater shortages, challenges yet persists in achieving optimal energy efficiency and cost‐effectiveness. Herein, a hybrid acid/alkali zinc air desalination battery (hAA‐ZADB) capable of concurrent desalination and high‐power density is reported. To improve cathodic efficiency and cost‐effectiveness, an electrocatalyst with dual atomic Fe–Mn sites on porous dodecahedral carbon (Mn‐Fe/p‐DC) is fabricated through a simple direct pyrolysis strategy for oxygen reduction reaction (ORR). The Mn–Fe/p‐DC‐900 electrocatalyst demonstrates exceptional electrocatalytic activity (E1/2 = 0.8 V in 0.5 m H2SO4) for ORR. This innovative hybrid acid/alkali cell design, coupled with advanced electrocatalysts, empowers the hAA‐ZADB system to achieve outstanding performance benchmarks with a high open circuit voltage of 2.22 V, an impressive power density of 375 mW cm−2, and notably elevated energy output of 106.9 kJ mol−1 even at a current density of 100 mA cm−2 during desalination. Distinguishing this work is its additional functionality, evident in a rapid salt removal rate of 3.64 mg cm−2 min−1 during desalination, achieving an impressive 88.67% removal of 0.6 M NaCl. This study highlights the promising potential of employing metallic air batteries for a self‐powered desalination technique applicable to specific scenarios.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要