Higher Hall conductivity from a single wave function: Obstructions to symmetry-preserving gapped edge of (2+1)D topological order

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
A (2+1)D topological ordered phase with U(1) symmetry may or may not have a symmetric gapped edge state, even if both thermal and electric Hall conductivity are vanishing. It is recently discovered that there are "higher" versions of Hall conductivity valid for fermionic fractional quantum Hall (FQH) states, which obstructs symmetry-preserving gapped edge state beyond thermal and electric Hall conductivity. In this paper, we show that one can extract higher Hall conductivity from a single wave function of an FQH state, by evaluating the expectation value of the "partial rotation" unitary which is a combination of partial spatial rotation and a U(1) phase rotation. This result is verified numerically with the fermionic Laughlin state with ν=1/3, 1/5, as well as the non-Abelian Moore-Read state. Together with topological entanglement entropy, we prove that the expectation values of the partial rotation completely determines if a bosonic/fermionic Abelian topological order with U(1) symmetry has a symmetry-preserving gappable edge state or not. Even in non-Abelian FQH states, partial rotation provides the Lieb-Schultz-Mattis type theorem constraining the low-energy spectrum of the bulk-boundary system. The generalization of higher Hall conductivity to the case with Lie group symmetry is also presented.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要